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Large amounts of biomedical data available to us today from In the context of machine learning, Dk (PIIQ) is often called the 60- g
various sources make it at least impractical and in many cases information gain achieved if P is used instead of Q. danio_rerio
impossible to analyze by hand even if confined within a ' . guttajpercha
specific problem. On the other hand most of these data are Dk (P||Q) = Z P(i) log P(Z.) , 55 | carbonic anhydrase
stored in a natural language form which makes it hard to i Q) o DOMOUZeNY jakob
. . . . Q
proc.ess automatically. Fortunately a -vast experience ga!r?ed in i § | : rcr;\oanzt Egir/l:sc
the field of natural language processing (NLP) can be utilized ;I TR Z - S mgre” PUallfar) D so. . a.nwaxg%h %E't‘é'iguerin siobul. palicus
to automate this process. We developed an advanced parser uspations . * S, wpe—P(fallgy) - - . kaplan_meier A T
for biomedical texts that should simplify both data retrieval ¢ cruskal wallis
[ ‘ -
and analysis. KL-divergence method allows us to determine which sets of ” ader wil
. _ words are better to replace with an ngram as we can i ) |
We considered the following problems: . . o SPrague deweyide
_ _ _ _ calculate the informativeness of ngram
1. parsing of informative multiword phrases 40 o ©pstein_barr
2. parsing and detection of chemical names written in Gaussian KL(bigram, token) . Vvariational KL(bigram, mixture)

0.90 0.92 0.94 0.96 0.98 100

different notations - trivial notation and IUPAC and 10 { Portion of bigram

Collocation graph based on the abstract of [Harris et al,

"
. s 9 4
SMILES-like | | L i 0 5
o _ Stimulation of bone formation in vivo by phosphate - =
3. assigning word embeddings for parsed words and , L O ° O 7] , _ o , ,
supplementation. Calcif Tissue Res. 1976 Nov 24;22(1): B4 0 6 Gaussian KL(bigram, token) Variational KL(bigram, mixture)
phrase§ . . 85-98.]. Stop-words were removed. Arrows skipped for e B &
4. analyzing complex syntactic dependencies between them _ o , 21 ¢ 6-
convenience even though the graph is directed. Size of the . 31 S s
' ; : / i ' ' ' i i ' ' * a
: : : 0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 06 08 10 Q 5 Q &
node is proportional to its PageRank score. Pottion:of bigraim Portion of bigram - 2 e S . .
= 4 O .
9 . 9
“BE. AR 2
” *
- : > ¥
2 R
&
To improve parsing quality we decided to learn to extract PageRank | Gaussian KL(bigram, token) | Gaussian KL(token, bigram) | Variational KL(bigram, mixture) | Variational KL(mixture, bigram) 000 025 050 075 100 125 150 175 200 050 075 100 125 180 175 200
informative n-grams (e.g. instead of ['amino’, “acid’, ...] we breast_cancer |ang_liii citron_kinase coli_isolates early_disease Fagerank-score Fagerdnx seore
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edges are found by calculating centrality measures of network
(degree, closeness, betweenness, etc.) or with the PageRank
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frequency (TF-IDF) statistic. It rewards frequent terms inside a
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